BigQuery
BigQuery is a completely serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data, with BI, machine learning and AI built in.
The BigQuery Wrapper allows you to read and write data from BigQuery within your Postgres database.
Supported Data Types#
Postgres Type | BigQuery Type |
---|---|
boolean | BOOL |
bigint | INT64 |
double precision | FLOAT64 |
numeric | NUMERIC |
text | STRING |
varchar | STRING |
date | DATE |
timestamp | DATETIME |
timestamp | TIMESTAMP |
Preparation#
Before you get started, make sure the wrappers
extension is installed on your database:
_10create extension if not exists wrappers;
and then create the foreign data wrapper:
_10create foreign data wrapper bigquery_wrapper_10 handler big_query_fdw_handler_10 validator big_query_fdw_validator;
Secure your credentials (optional)#
By default, Postgres stores FDW credentials inide pg_catalog.pg_foreign_server
in plain text. Anyone with access to this table will be able to view these credentials. Wrappers is designed to work with Vault, which provides an additional level of security for storing credentials. We recommend using Vault to store your credentials.
_15-- Save your BigQuery service account json in Vault and retrieve the `key_id`_15insert into vault.secrets (name, secret)_15values (_15 'bigquery',_15 '_15 {_15 "type": "service_account",_15 "project_id": "your_gcp_project_id",_15 "private_key_id": "your_private_key_id",_15 "private_key": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",_15 ..._15 }_15 '_15)_15returning key_id;
Connecting to BigQuery#
We need to provide Postgres with the credentials to connect to BigQuery, and any additional options. We can do this using the create server
command:
_10create server bigquery_server_10 foreign data wrapper bigquery_wrapper_10 options (_10 sa_key_id '<key_ID>', -- The Key ID from above._10 project_id 'your_gcp_project_id',_10 dataset_id 'your_gcp_dataset_id'_10 );
Creating Foreign Tables#
The BigQuery Wrapper supports data reads and writes from BigQuery.
Integration | Select | Insert | Update | Delete | Truncate |
---|---|---|---|---|---|
BigQuery | ✅ | ✅ | ✅ | ✅ | ❌ |
For example:
_10create foreign table my_bigquery_table (_10 id bigint,_10 name text,_10 ts timestamp_10)_10 server bigquery_server_10 options (_10 table 'people',_10 location 'EU'_10 );
Foreign table options#
The full list of foreign table options are below:
-
table
- Source table or view name in BigQuery, required.This can also be a subquery enclosed in parentheses, for example,
_10table '(select * except(props), to_json_string(props) as props from `my_project.my_dataset.my_table`)'Note: When using subquery in this option, full qualitified table name must be used.
-
location
- Source table location, optional. Default is 'US'. -
timeout
- Query request timeout in milliseconds, optional. Default is '30000' (30 seconds). -
rowid_column
- Primary key column name, optional for data scan, required for data modify
Examples#
Some examples on how to use BigQuery foreign tables.
Basic example#
This will create a "foreign table" inside your Postgres database called people
:
_12-- Run below SQLs on BigQuery to create source table_12create table your_project_id.your_dataset_id.people (_12 id int64,_12 name string,_12 ts timestamp_12);_12_12-- Add some test data_12insert into your_project_id.your_dataset_id.people values_12 (1, 'Luke Skywalker', current_timestamp()), _12 (2, 'Leia Organa', current_timestamp()), _12 (3, 'Han Solo', current_timestamp());
Create foreign table on Postgres database:
_12create foreign table people (_12 id bigint,_12 name text,_12 ts timestamp_12)_12 server bigquery_server_12 options (_12 table 'people',_12 location 'EU'_12 );_12_12select * from people;